土衛二
圖一: 1981年8月26日旅行者2號所拍攝的土衛二
土衛二(Enceladus)是土星的第六大衛星,[10] 於1779年為威廉·赫歇爾所發現。[11] 在旅行者號於1980年代探測土星之前,人們只知道土衛二是一個被冰覆蓋的衛星。旅行者號顯示土衛二直徑約為500公里(相當於土星最大的衛星土衛六直徑的十分之一),而且其表面幾乎能反射百分之百的陽光。旅行者1號發現土衛二的軌道位於土星E環最稠密的部分,表明兩者之間可能存在某種聯繫;而旅行者2號則發現:儘管該衛星體積不大,但是在其表面既存在古老的撞擊坑構造,又存在較為年輕的、地質活動所造成的扭曲地形構造——其中一些地區的地質年代甚至只有1億年。
二十世紀末發射,並於二十一世紀初抵達土星附近的卡西尼號太空船則提供了大量的數據,解開了旅行者探訪之後留下的諸多疑團。在2005年,卡西尼飛船數次近距離掠過土衛二,獲得了該衛星表面及其環境的大量數據,特別是發現了從該衛星南極地區噴射出的富含水分的羽狀物。該發現,以及可探測到的逃逸內能的存在、南極地區極少存在撞擊坑的情況,共同證明了土衛二至今仍然存在地質活動。在巨行星的衛星系統中,許多衛星都會成為軌道共振的犧牲品,這會導致星體震動和軌道的擾動,而對於更加靠近行星的衛星,潮汐效應則會加熱行星的內部,這或許可以解釋土衛二的地質活動。
土衛二是外太陽系中迄今為止觀測到存在地質噴發活動的三個星體之一(另外兩個分別是木衛一和海衛一)。分析認為噴射的物質是星體表面以下的液態水;同時,在噴射的羽狀物中亦發現了奇特的化學成分,因此土衛二也被認為是天體生物學的重要研究對象。[12] 此外,噴射現象也為E環的物質來源於土衛二的觀點提供了重要證據。
土衛二(恩克拉多斯)以希臘神話中的巨人恩克拉多斯命名。該名字及其他六顆第一批被發現的土星衛星的名稱都由威廉·赫歇爾的兒子約翰·赫歇爾在其1847年出版的《在好望角天文觀測的結果》(Results of Astronomical Observations made at the Cape of Good Hope)中率先提出。[13] 如此命名的理由是:土星所代表的農神薩圖爾努斯即為希臘神話中泰坦族的領袖克羅諾斯。國際天文學聯合會以阿拉伯文學作品《一千零一夜》中的人名和地名命名土衛二的地表構造。[14] 其中撞擊坑以人物命名,其他地質結構如深谷、山脊、平原和槽溝則以地點命名。迄今為止國際天文聯合會共正式命名了57處地質結構,另有22處於1982年為旅行者號所發現的地質結構亦得到了命名,此外,對2005年卡西尼號在其三次飛掠中發現的35處地質結構的命名也於2006年11月獲得了認可。[15] 這些被認可的命名包括了撒馬爾罕槽溝,阿拉丁隕石坑和錫蘭平原等。
1789年8月28日,威廉·赫歇爾在第一次使用他的1.2米望遠鏡——當時世界上直徑最大的望遠鏡——時發現了土衛二。[16][17] 其實在1787年,赫歇爾就已經通過他的16.5厘米望遠鏡觀測到這顆衛星,只是當時未得到確認。[18] 由於土衛二糟糕的視星等(高達11.7等),同時它又靠近明亮得多的土星及其光環,從地球上很難觀測到這顆衛星,只有通過透鏡直徑達15-30厘米的望遠鏡才能觀測到,這還取決於當時當地的大氣狀況和光污染程度。作為太空時代之前發現的眾多土星衛星之一,土衛二的最佳觀測時間是在環面穿越時期,此時土星環垂直於地球運行點的切線,在地球上只能觀測到一條細線,土星環的亮度大為降低,故為觀測土衛二的最佳時機。[19]直到旅行者號計劃實施後,對土衛二的觀測才得到顯著改善,而之前科學家所掌握的資料僅僅包括了該衛星的軌道特徵及對其質量、密度和反照率的約略估計。
兩艘旅行者飛船獲得了第一組土衛二的特寫鏡頭,其中旅行者1號是第一艘與土衛二擦肩而過的人造飛行器,它於1980年11月11日在距土衛二20萬2千公里處掠過。[20] 儘管在這個距離上獲得的影像資料解析度較低,但是仍然顯示土衛二擁有一個高反照率並缺乏撞擊坑的地表,這表明該衛星地表的地質年齡較低。[19] 旅行者1號亦證實土衛二的運行軌道恰好位於土星E環的稠密處;結合土衛二的年輕地表分析,參與旅行者飛船計劃的科學家認為E環是由土衛二地表所噴射出的顆粒組成的。旅行者2號於1981年8月26號在距土衛二8萬7010公里處飛掠而過,從而獲得了關於這顆衛星更為清晰的影像資料。如圖一所示,這些資料展示了這顆衛星年輕地表的諸多特徵,也表明在這顆衛星的不同地區,其地質年齡存在極大不同。[22]
在該衛星北半球中、高緯度地區,存在著大量的撞擊坑,而在靠近赤道的地區,撞擊坑的分布則相對較少。這種多樣性的地貌特徵與地質年齡古老、撞擊坑眾多的土衛一——該衛星較土衛二稍小——形成了鮮明對比。這種年輕地貌的發現在科學界引起了很大轟動——當時還沒有任何理論可以解釋為何一顆體積如此之小的天體(相較於暴烈的木衛一,它已經處於冷卻狀態)依然存在著地質活動。不過,旅行者2號的觀測數據並不能證明土衛二現階段是否仍存在地質活動,也無法確認該衛星是否就是E環物質的來源地。這些謎團直到2004年7月1日卡西尼號太空船進入環土星軌道後才得以解決。在旅行者2號觀測結果的基礎上,土衛二成為了卡西尼號飛船計劃的一個優先觀測目標。卡西尼號在1500公里範圍內數次有目的性的飛掠,及在10萬公里範圍內眾多非目的性的飛掠提供了大量的觀測資料。
迄今為止,卡西尼號共進行了4次近距離的飛掠,獲得了眾多關於土衛二表面的意義重大的信息,並發現了衛星南極地區發生的含有水蒸氣和複雜碳氫化合物的噴射現象。這些發現也促使卡西尼號的飛行軌道做出改變,對土衛二實施更近距離的飛掠,其中包括2008年3月的一次近距離相遇。在該次相遇中,卡西尼號對土衛二進行了精度達到52公里以內的探測。2008年至2010年間卡西尼號的後續任務包括了7次對土衛二的近距離飛掠,其中2008年下半年的兩次飛掠距離近達50公里。[23]
卡西尼號在土衛二上的發現推動了數項研究計劃的跟進。2007年,美國國家航空暨太空總署完成了一項向土衛二發射軌道飛行器並詳細研究南極地區羽狀噴射物的計劃的概念性研究,[24] 遺憾的是該計劃未得到進一步實施。[25]歐洲太空總署也計劃向土衛二發射探測器,該計劃將與土衛六的研究計劃共同實施。[26]「土衛六-土星計劃」是美國國家航空暨太空總署和歐洲太空總署聯合提出的一項旨在探測土星系衛星(包括土衛二)的計劃,與之相競爭的則是「木衛二-木星計劃」。2009年2月,美國國家航空暨太空總署和歐洲太空總署宣布將優先實施木衛二-木星計劃,[27] 同時也將繼續研究土衛六-土星計劃的可行性,擇機實施。
軌道
圖二: 從土星北極上方觀測的土衛二軌道圖(紅色高亮部分)
土衛二屬土星的內層大衛星。按距離土星由近及遠排序,土衛二位居第14位,它的軌道位於土星E環的稠密部分。土衛二在距土星中心23萬8千公里、距其雲層頂部18萬公里的軌道上環繞土星運轉,其軌道位於土衛一與土衛三之間,公轉周期為32.9小時(可以通過一個晚上的觀測發現其位移)。其軌道與土衛四的軌道形成了2:1的軌道共振,即每當它完成兩次公轉,土衛四即完成一次公轉。這種軌道共振關係導致土衛二軌道的離心率達到了0.0047,並為其地質活動提供了加熱源。[2]如同大部分土星的大衛星一般,土衛二的自轉與公轉相同步,它永遠都保持著同一面面向土星。不同於月球,土衛二並沒有出現自轉軸的擺動(而月球則有超過1.5°的擺動)。不過,對土衛二外形的分析表明,有時候它會由於外力作用——如土衛四的軌道共振效應——而產生自轉軌道的擾動。[2] 這種擾動亦能夠為土衛二提供額外的加熱源。[编辑]
與E環的相互影響
圖三: 土衛二軌道的側面圖,該圖顯示了土衛二與土星E環的關係
E環是土星的最外層光環,極其寬大(是土星環中最寬的環),但也極其稀薄,構成物質僅為極細小的冰晶和粉塵。該環起始於土衛一的軌道,一直延伸至土衛五的軌道附近,甚至有觀測者認為它已經延伸至土衛六的軌道附近了,如此算來,其寬度將達100萬公里。然而,眾多的數學公式都顯示這樣的環是不穩定的,只能維持1萬至100萬年。由此看來,構成該環的顆粒必然是從某處得到了源源不斷的補充,而土衛二的運行軌道則正好處於環帶之中,並且位於環帶中最稠密的部分。因此,某些理論推測土衛二是構成E環的顆粒的來源地。而卡西尼號的觀測結果支持了這種觀點。
土衛二在土星E環內運行
事實上,共有兩種不同的機制補充著環帶的顆粒。[28] 首先,同時也是最重要的,是土衛二南極地區的羽狀噴射物,儘管大部分的噴射物都落回衛星表面,但由於土衛二的逃逸速度僅為866公里/小時,故仍有部分物質逃逸出土衛二的重力控制而進入環土星的軌道。第二種機制是流星對土衛二的轟擊造成其表面揚起的粉塵進入環帶。這種機制並非土衛二所獨有,它對E環中的所有衛星都有效。
土衛二是一顆相對較小的衛星,平均直徑為505公里,只有月球直徑的七分之一,比不列顛島的最大長度還稍小,而其大小也和不列顛島不相上下。而亞利桑那州和科羅拉多州也能夠容得下這顆衛星。不過若論其球體面積,則比以上這些區域要大得多,它的面積達80萬平方公里,相當於莫三比克的國土面積,比德克薩斯州大15%。
土衛二的質量和直徑都位列土星衛星的第六位,居於土衛六(5150公里)、土衛五(1530公里)、土衛八(1440公里)、土衛四(1120公里)和土衛三(1050公里)之後。它也是土星擁有的最小的球狀衛星之一,除了它和土衛一(390公里)之外,其他的小衛星均為不規則形狀。
圖五: 土衛二與英國的大小比較
事實上土衛二為一個扁平橢球體,依據卡西尼號發回的照片進行測算,土衛二的三軸長度為513(a)×503(b)×497(c)公里[2],其中(a)為面向土星面與背向土星面兩極間的距離,(b)為星體凹面與凸面兩極間的距離,(c)為南極與北極之間的距離。土衛二圍繞其短軸自轉,而其長軸則成放射狀地偏離土星。
圖四: 土衛二(左上)運行至土衛六前方(卡西尼號攝於2006年2月5日),此時土衛二距卡西尼號410萬公里,土衛六距卡西尼號530萬公里。
表面1981年8月,旅行者2號在人類歷史上首次近距離地觀測土衛二。對獲得的圖像信息進行分析後,科學家們發現了至少五種不同的地形,包括撞擊坑地形、平坦地形(較年輕),而在平坦地形附近,則往往分布著山脊。[22] 另外還觀測到大量的線性地縫[29] 和懸崖。鑒於在平坦地區分布的撞擊坑較少,科學家推測這些平坦地區的形成時間可能只有幾億年。所以,在較近的一段地質時間裡,土衛二上必然發生了諸如「水火山」之類的地質活動,才能使得原先千瘡百孔的地表平整如初。固態水(冰)使得土衛二表面發生了很大變化,使其成為太陽系中反射率最大的天體,它的幾何反照率高達138%。[6] 正因為它反射了如此之多的陽光,其平整地表的夜間溫度僅為-198℃(較其他土星衛星寒冷)。[8]
卡西尼號在2005年2月17日、3月9日、7月14日三次飛掠土衛二,觀測到了土衛二表面的更多細節。例如旅行者2號所觀測到的平坦地形,實際上是一些撞擊坑分布較少的地區,這類地區還分布有山脊和懸崖。同時,在地質年齡較大、撞擊坑分布密集的地區,還發現了數目眾多的地縫,這證明在撞擊坑大量形成之後,這一地區還經歷了劇烈的地質運動。[30] 另外,在旅行者2號過去未詳細勘測的地區,亦發現了幾處較年輕的地形,如南極附近的一處古怪地形。[2]
撞擊坑是太陽系許多天體上存在的普遍現象。土衛二的許多區域都被分布密度不同、破損程度不同的撞擊坑群所覆蓋。在旅行者2號觀測結果的基礎上,科學家根據撞擊坑分布密度的不同將其分為三類撞擊坑地形單元。其中ct1和ct2雖然在撞擊坑破損程度上有所不同,但都包含了數目眾多的、直徑達10-20公里的撞擊坑;而cp則是分布有少量撞擊坑的平坦地區。[31] 這種基於撞擊坑密度(及與此相關的地表年齡)而進行的撞擊坑地形細分支持了認為土衛二曾經歷過多階段的地表重塑的觀點。
圖六:土衛二上的破損撞擊坑(2005年2月17日卡西尼號所攝):在照片的底部四分之一可以看到從左延伸至右的哈馬罕槽溝。在哈馬罕槽溝之上則是ct2地形單元。
近期卡西尼號的觀測則提供了關於ct2和cp地形單元的更多詳細信息。這些高解析度照片顯示土衛二的許多撞擊坑都出現了由粘性崩塌和結構性裂痕導致的嚴重破損。[32] 粘性崩塌是重力的作用所造成的撞擊坑及其他水冰構成的地形的破損,這個作用過程需要經歷漫長的地質時間,並將最終使該地區的地勢趨於平緩。這個作用的效果取決於冰的溫度,因為相較於溫度較低、質地較硬的冰,溫度較高的冰更容易遭到破壞。經歷了粘性崩塌作用的撞擊坑一般都有一個凸形底部,有時甚至只剩下一圈坑緣。圖八左上角的大撞擊坑——頓雅扎德撞擊坑所擁有的凸形底部即是粘性崩塌作用的例證。另外,土衛二表面的許多撞擊坑也已遭到結構性裂痕的嚴重破壞。照片底部中央偏右直徑近10公里的撞擊坑即是證明:寬度只有數百米至一千米的細長的裂痕已經嚴重破壞了該撞擊坑的邊緣和底部。迄今為止,幾乎所有位於ct2地形單元中的撞擊坑都有構造性變形的跡象。粘性崩塌和結構性裂痕的作用都證明了——儘管撞擊坑地形地區是土衛二上地質年齡最大、撞擊坑留存度最高的地區,但其中的幾乎所有撞擊坑都已處於某種被破壞的階段。
圖七:土衛二表面,拉伯塔伊特槽溝附近類似於木衛二表面構造的地形,卡西尼號於2005年2月17日拍攝。
旅行者2號在土衛二上發現了幾種地質構造,包括槽溝、懸崖和山脊等。[22] 近期卡西尼號的觀測表明土衛二上改變地貌的主要方式是構造作用。土衛二上發現的一種更加引人關注的地質構造是裂痕,這些峽谷能夠延伸至200公里長,寬度為5-10公里,深度為1公里。圖七顯示了一條典型的大裂痕切割那些地質年齡較大、已經遭到結構性破壞的地區的景象。圖八底部亦顯示了這種地質構造。裂痕是一種較年輕的地質構造,因為它通常表現為切割其他地質結構,同時裂痕兩壁有突出的露頭。
土衛二上存在構造作用的另一例證是槽溝結構,它由一系列呈曲線狀的槽溝和山脊構成。這種條紋狀結構最初是由旅行者2號發現的,通常是平坦地形與撞擊坑地形的分野標誌。[22] 在圖六和圖十中均可見到這種地質構造(圖十中的為撒馬爾罕槽溝)。這種槽溝地形容易令人聯想起木衛三上的相似地貌。不過土衛二的槽溝構造要比後者複雜:木衛三上的槽溝為平行排列,而土衛二的槽溝排列則顯得較為凌亂,形狀也多為鋸齒狀。引人關注的是,卡西尼號在對撒馬爾罕槽溝進行觀測時發現了一些暗點(直徑125-750米),它們平行排列於槽溝旁,有推測認為這些暗點是位於該地區的陷坑。
除此之外,土衛二表面還有多種地質構造。圖九顯示了一種狹窄的斷裂地形(通常有數百米寬),該地形由卡西尼號發現。這些裂縫常常貫穿於撞擊坑地形之中,其深度也只有一兩百米。其中的許多裂縫在其形成過程中受到了撞擊坑所產生的微薄表土的影響,導致裂紋走向經常發生變化。
|