二、月掩星的應用
觀測月掩星的原理乃高速記錄錄掩星瞬間星球的光度變化。圖二(1)所示為一星球的掩星資料,圖中的點為每隔0.002秒記錄一次的觀測值;實線則為理論所計算出點光源的掩星曲線。
圖二(1)金牛座T型星DK Tau於1986年10月的再現掩星事件。資料是紅外2微米波段,以夏威夷三米望遠鏡觀測的結果。圖中每一點代表千分之二秒光度取樣的結果,0.1秒的尺度標出以供參考,實線為模擬掩星曲線。
當所觀測的星體它際上為一對雙星時(圖二(2)),所得到的結果便是兩次光度變化,由其程度則可推算出兩星的相對亮度,而兩次事件的時間差乘上月緣掩星的角速度(約每秒0.3角秒)便是雙星在掩星方向上(即掩星接觸點上月緣法線)的投影角距離。在圖二的例子中兩顆星的亮度相當,而投影角距約為0.2角秒。
圖二(2)蛇夫座SR-12的月掩星曲線包含兩個繞射圖形,看得出此星實際上為一對雙星。兩星的光度及彼此之間的投影角距離可因此量得:第一顆(先發生)與第二顆星的亮度比為1.1;掩星時間差為O.4秒,乘上每秒0.47秒弧的掩星速度,推算出0.19角秒的角距離。觀測時間是1986年1月,望遠鏡及取樣時間與(1)同。
如果被掩過的星不是一個點光源而是一個盤面,可以將盤面想像成由點光源組成,不同位置的點各形成一組繞射圖型彼此干涉,其結果乃是減弱了明暗紋之間的對比(破壞性干涉);星球的角直徑愈大,明暗紋的對比愈小(圖三)。因此我們可由明暗紋之間的相對強度,推算出星球的大小:掩星曲線中的繞射紋因此蘊含了星體光度分佈(單星、雙星、或盤面)的訊息,而獲得的方法是快速取資料,盡量詳細地分辨出繞射紋的結構 。
圖三:掩星曲線隨星球角直徑變化的情形;星球角直徑愈大繞射圖形愈不明顯
|